AKBXR AI
Getting Started

Quickstart

This guide will help you make your first API call and build a simple chat application using the AI API. We'll cover text-only conversations, image analysis, and streaming responses.

Prerequisites

Before starting, make sure you have:

  • Installed the SDK for your preferred language
  • Your API key: YOUR_API_KEY (during beta)
  • Basic knowledge of your chosen programming language

Your First API Call

Let's start with a simple text completion:

JavaScript/Node.js

import OpenAI from "openai";

const openai = new OpenAI({
  baseURL: "https://api.akbxr.com/v1",
  apiKey: "YOUR_API_KEY",
});

async function firstCall() {
  try {
    const completion = await openai.chat.completions.create({
      model: "auto",
      messages: [
        { role: "user", content: "Hello! Can you tell me a joke?" }
      ],
    });

    console.log(completion.choices[0].message.content);
  } catch (error) {
    console.error("Error:", error);
  }
}

firstCall();

Python

import openai

client = openai.OpenAI(
    api_key="YOUR_API_KEY",
    base_url="https://api.akbxr.com/v1"
)

try:
    response = client.chat.completions.create(
        model="auto",
        messages=[
            {"role": "user", "content": "Hello! Can you tell me a joke?"}
        ]
    )

    print(response.choices[0].message.content)
except Exception as error:
    print(f"Error: {error}")

cURL

curl -X POST https://api.akbxr.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -d '{
    "model": "auto",
    "messages": [
      {
        "role": "user",
        "content": "Hello! Can you tell me a joke?"
      }
    ],
    "stream": false
  }'

Building a Simple Chat Application

Let's build a more interactive chat application:

JavaScript Chat Bot

import OpenAI from "openai";
import readline from "readline";

const openai = new OpenAI({
  baseURL: "https://api.akbxr.com/v1",
  apiKey: "YOUR_API_KEY",
});

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
});

// Store conversation history
let messages = [
  { role: "system", content: "You are a helpful assistant." }
];

async function chat() {
  console.log("🤖 AI Assistant started! Type 'quit' to exit.\n");

  const askQuestion = () => {
    rl.question("You: ", async (input) => {
      if (input.toLowerCase() === "quit") {
        console.log("👋 Goodbye!");
        rl.close();
        return;
      }

      // Add user message to history
      messages.push({ role: "user", content: input });

      try {
        const completion = await openai.chat.completions.create({
          model: "auto",
          messages: messages,
          temperature: 0.7,
        });

        const assistantMessage = completion.choices[0].message.content;

        // Add assistant response to history
        messages.push({ role: "assistant", content: assistantMessage });

        console.log(`🤖 Assistant: ${assistantMessage}\n`);
      } catch (error) {
        console.error("❌ Error:", error.message);
      }

      askQuestion(); // Continue the conversation
    });
  };

  askQuestion();
}

chat();

Python Chat Bot

import openai

client = openai.OpenAI(
    api_key="YOUR_API_KEY",
    base_url="https://api.akbxr.com/v1"
)

# Store conversation history
messages = [
    {"role": "system", "content": "You are a helpful assistant."}
]

def chat():
    print("🤖 AI Assistant started! Type 'quit' to exit.\n")

    while True:
        user_input = input("You: ")

        if user_input.lower() == "quit":
            print("👋 Goodbye!")
            break

        # Add user message to history
        messages.append({"role": "user", "content": user_input})

        try:
            response = client.chat.completions.create(
                model="auto",
                messages=messages,
                temperature=0.7
            )

            assistant_message = response.choices[0].message.content

            # Add assistant response to history
            messages.append({"role": "assistant", "content": assistant_message})

            print(f"🤖 Assistant: {assistant_message}\n")

        except Exception as error:
            print(f"❌ Error: {error}")

if __name__ == "__main__":
    chat()

Image Analysis

The AI API supports image analysis. Here's how to analyze images:

JavaScript Image Analysis

import OpenAI from "openai";
import fs from "fs";

const openai = new OpenAI({
  baseURL: "https://api.akbxr.com/v1",
  apiKey: "YOUR_API_KEY",
});

async function analyzeImage() {
  try {
    // Convert image to base64
    const imageBuffer = fs.readFileSync("path/to/your/image.jpg");
    const base64Image = imageBuffer.toString("base64");

    const completion = await openai.chat.completions.create({
      model: "auto",
      messages: [
        {
          role: "user",
          content: [
            {
              type: "image_url",
              image_url: {
                url: `data:image/jpeg;base64,${base64Image}`,
              },
            },
            {
              type: "text",
              text: "What's in this image?",
            },
          ],
        },
      ],
    });

    console.log(completion.choices[0].message.content);
  } catch (error) {
    console.error("Error:", error);
  }
}

analyzeImage();

Python Image Analysis

import openai
import base64

client = openai.OpenAI(
    api_key="YOUR_API_KEY",
    base_url="https://api.akbxr.com/v1"
)

def analyze_image(image_path):
    try:
        # Read and encode image
        with open(image_path, "rb") as image_file:
            base64_image = base64.b64encode(image_file.read()).decode("utf-8")

        response = client.chat.completions.create(
            model="auto",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_image}"
                            }
                        },
                        {
                            "type": "text",
                            "text": "What's in this image?"
                        }
                    ]
                }
            ]
        )

        print(response.choices[0].message.content)

    except Exception as error:
        print(f"Error: {error}")

# Usage
analyze_image("path/to/your/image.jpg")

cURL Image Analysis

# First, convert your image to base64
base64 -i your-image.jpg | pbcopy  # macOS
# or
base64 your-image.jpg > image.b64  # Linux

curl -X POST https://api.akbxr.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -d '{
    "model": "auto",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "image_url",
            "image_url": {
              "url": "..."
            }
          },
          {
            "type": "text",
            "text": "What is in this image?"
          }
        ]
      }
    ]
  }'

Streaming Responses

For real-time responses, use streaming:

JavaScript Streaming

import OpenAI from "openai";

const openai = new OpenAI({
  baseURL: "https://api.akbxr.com/v1",
  apiKey: "YOUR_API_KEY",
});

async function streamResponse() {
  try {
    const stream = await openai.chat.completions.create({
      model: "auto",
      messages: [{ role: "user", content: "Write a short story about AI" }],
      stream: true,
    });

    console.log("🤖 Assistant: ");
    for await (const chunk of stream) {
      const content = chunk.choices[0]?.delta?.content || "";
      if (content) {
        process.stdout.write(content);
      }
    }
    console.log("\n");
  } catch (error) {
    console.error("Error:", error);
  }
}

streamResponse();

Python Streaming

import openai

client = openai.OpenAI(
    api_key="YOUR_API_KEY",
    base_url="https://api.akbxr.com/v1"
)

def stream_response():
    try:
        stream = client.chat.completions.create(
            model="auto",
            messages=[{"role": "user", "content": "Write a short story about AI"}],
            stream=True
        )

        print("🤖 Assistant: ", end="")
        for chunk in stream:
            content = chunk.choices[0].delta.content
            if content:
                print(content, end="", flush=True)
        print("\n")

    except Exception as error:
        print(f"Error: {error}")

stream_response()

Error Handling

Always implement proper error handling:

JavaScript Error Handling

async function robustAPICall() {
  try {
    const completion = await openai.chat.completions.create({
      model: "auto",
      messages: [{ role: "user", content: "Hello!" }],
    });

    return completion.choices[0].message.content;
  } catch (error) {
    if (error.status === 401) {
      console.error("❌ Authentication failed: Check your API key");
    } else if (error.status === 429) {
      console.error("❌ Rate limit exceeded: Try again later");
    } else if (error.status === 500) {
      console.error("❌ Server error: Try again later");
    } else {
      console.error("❌ Unexpected error:", error.message);
    }
    throw error;
  }
}

Python Error Handling

import openai
from openai import OpenAIError

def robust_api_call():
    try:
        response = client.chat.completions.create(
            model="auto",
            messages=[{"role": "user", "content": "Hello!"}]
        )
        return response.choices[0].message.content

    except openai.AuthenticationError:
        print("❌ Authentication failed: Check your API key")
    except openai.RateLimitError:
        print("❌ Rate limit exceeded: Try again later")
    except openai.APIError as e:
        print(f"❌ API error: {e}")
    except Exception as e:
        print(f"❌ Unexpected error: {e}")

    return None

That's it! You're now ready to build amazing AI-powered applications with our API. Happy coding! 🚀